AI

Użycie interfejsu API Ollama Web Search w Pythonie

Użycie interfejsu API Ollama Web Search w Pythonie

Tworzenie agentów wyszukiwania AI za pomocą Pythona i Ollama

Biblioteka Pythona Ollama zawiera teraz natywne możliwości wyszukiwania w sieci OLlama web search. Dzięki kilku linijkom kodu możesz wzbogacić swoje lokalne modele językowe o rzeczywiste informacje z sieci, zmniejszając halucynacje i poprawiając dokładność.

Porównanie magazynów wektorów dla RAG

Porównanie magazynów wektorów dla RAG

Wybierz odpowiedni wektorowy system baz danych dla swojej architektury RAG

Wybór odpowiedniego vector store może zdecydować o sukcesie lub porażce wydajności, kosztów i skalowalności Twojej aplikacji RAG. Ta szczegółowa analiza obejmuje najpopularniejsze opcje w latach 2024-2025.

Go Microservices do Orchestracji AI/ML

Go Microservices do Orchestracji AI/ML

Twórz wydajne potoki AI/ML za pomocą mikrousług w Go

Z racji zwiększającej się złożoności obciążeń AI i ML, rosnące zapotrzebowanie na solidne systemy orkiestracji staje się jeszcze większe.
Prosta konstrukcja, wydajność i współbieżność Go czynią z niego idealny wybór do budowania warstwy orkiestracji rur ML, nawet wtedy, gdy same modele są napisane w Pythonie.

Infrastruktura AI na sprzęcie konsumentowym

Infrastruktura AI na sprzęcie konsumentowym

Wdrażaj sztuczną inteligencję na poziomie przedsiębiorstwa na sprzęcie o niskim koszcie za pomocą otwartych modeli

Demokratyzacja AI jest tu. Z powodu otwartych źródeł LLM takich jak Llama 3, Mixtral i Qwen, które teraz rywalizują z modelami prywatnymi, zespoły mogą tworzyć potężną infrastrukturę AI za pomocą sprzętu konsumenta - znacznie obniżając koszty, jednocześnie utrzymując pełną kontrolę nad prywatnością danych i wdrażaniem.

Uruchamianie FLUX.1-dev GGUF Q8 w Pythonie

Uruchamianie FLUX.1-dev GGUF Q8 w Pythonie

Przyspiesz FLUX.1-dev za pomocą kwantyzacji GGUF

FLUX.1-dev to potężny model generowania obrazów na podstawie tekstu, który daje wspaniałe wyniki, ale jego wymagania co do pamięci (24 GB i więcej) sprawiają, że trudno go uruchomić na wielu systemach. GGUF quantization of FLUX.1-dev oferta rozwiązania, które zmniejsza zużycie pamięci o około 50%, jednocześnie zachowując bardzo dobre jakość obrazów.