
Gemma2 대 Qwen2 대 Mistral Nemo 대...
논리적 오류 탐지 테스트
최근 몇몇 새로운 LLM이 출시되면서 흥미로운 시대가 되었습니다.
이제 그들의 성능을 논리적 오류를 감지하는 데 어떻게 작동하는지 테스트해 보겠습니다.
논리적 오류 탐지 테스트
최근 몇몇 새로운 LLM이 출시되면서 흥미로운 시대가 되었습니다.
이제 그들의 성능을 논리적 오류를 감지하는 데 어떻게 작동하는지 테스트해 보겠습니다.
선택할 수 있는 항목은 많지 않지만 여전히...
LLM을 처음 실험할 때 그들의 UI는 활발한 개발 중이었고, 지금은 그 중 일부가 정말 잘 되어 있습니다.
일부 실험을 필요로 하지만
아직도 LLM이 당신이 원하는 것을 이해하려고 애를 쓰지 않도록 하기 위해 효과적인 프롬프트를 작성하는 데 사용되는 일반적인 접근 방법이 몇 가지 있습니다.
8개의 llama3 (Meta+) 및 5개의 phi3 (Microsoft) LLM 버전
다양한 파라미터 수와 양자화 방식을 사용한 모델들이 어떻게 동작하는지 테스트해보았습니다.
Ollama LLM 모델 파일은 많은 저장 공간을 차지합니다.
ollama 설치 후에는 즉시 ollama를 재구성하여 새 위치에 저장하는 것이 좋습니다.
이렇게 하면 새 모델을 끌어다 놓을 때 이전 위치에 다운로드되지 않습니다.