Research

AI 슬롭 감지: 기술과 주의점

AI 슬롭 감지: 기술과 주의점

AI 생성 콘텐츠 감지 기술 가이드

AI 생성 콘텐츠의 확산은 새로운 도전을 만들었습니다: 진짜 인간의 글과 “AI slop” - 질이 낮고, 대량 생산된 합성 텍스트를 구분하는 것.

자체 호스팅 Cognee: LLM 성능 테스트

자체 호스팅 Cognee: LLM 성능 테스트

로컬 LLM을 사용하여 Cognee 테스트 - 실제 결과

Cognee는 문서에서 지식 그래프를 생성하기 위한 Python 프레임워크입니다. 하지만 이 프레임워크는 자체 호스팅된 모델과 호환되는가요?

BAML 대 교수: 구조화된 LLM 출력

BAML 대 교수: 구조화된 LLM 출력

BAML 및 Instructor를 활용한 타입 안전한 LLM 출력

대규모 언어 모델(Large Language Models, LLM)을 프로덕션 환경에서 사용할 때, 구조화된 타입 안전한 출력을 얻는 것은 매우 중요합니다.
인기 있는 두 프레임워크인 BAML 및 Instructor은 이 문제를 해결하기 위해 서로 다른 접근 방식을 사용합니다.

Jupyter Notebook 참고 자료

Jupyter Notebook 참고 자료

필수 단축키 및 마법 명령어

Jupyter Notebook 생산성을 극대화하기 위해 필수적인 단축키, 마직기 명령어 및 워크플로우 팁을 활용해 보세요. 이는 데이터 과학 및 개발 경험을 획기적으로 개선할 것입니다.

RAG 비교를 위한 벡터 저장소

RAG 비교를 위한 벡터 저장소

적절한 벡터 DB를 선택하여 RAG 스택 구축하기

정확한 벡터 저장소 선택은 RAG 애플리케이션의 성능, 비용, 확장성에 큰 영향을 미칩니다. 이 포괄적인 비교는 2024-2025년에 가장 인기 있는 옵션들을 다룹니다.

Strapi vs Directus vs Payload: 헤드리스 CMS 대결

Strapi vs Directus vs Payload: 헤드리스 CMS 대결

헤드리스 CMS 비교 - 기능, 성능 및 사용 사례

올바른 헤드리스 CMS를 선택하는 것은 콘텐츠 관리 전략을 성공적으로 만들거나 망하게 만들 수 있습니다.
개발자가 콘텐츠 중심 애플리케이션을 구축하는 방식에 영향을 미치는 세 가지 오픈소스 솔루션을 비교해 보겠습니다.

LLM 비용 절감: 토큰 최적화 전략

LLM 비용 절감: 토큰 최적화 전략

스마트 토큰 최적화로 LLM 비용을 80% 절감하세요

토큰 최적화는 예산을 소모하는 실험에서 비용 효율적인 LLM(대규모 언어 모델) 애플리케이션을 구분하는 핵심 기술입니다.

Nostr: 분산형 소셜 네트워킹, 사용자 통계 및 대안

Nostr: 분산형 소셜 네트워킹, 사용자 통계 및 대안

21,000명 이상의 사용자가 있는 분산형 소셜 프로토콜로 온라인 프라이버시를 재정의하다

여기서 우리는 Nostr - 검열에 강한 커뮤니케이션과 사용자 제어 데이터를 통해 대형 기술 기업의 지배를 도전하는 분산형 소셜 프로토콜을 소개합니다.