
GitHub Copilot 사용법 - 설명 및 유용한 명령어
설명, 계획, 명령어 목록 및 키보드 단축키
여기 최신 GitHub Copilot 단축키 시트가 있습니다. 이 문서는 Visual Studio Code와 Copilot Chat을 위한 필수 단축키, 명령어, 사용 팁, 컨텍스트 기능을 다룹니다.
설명, 계획, 명령어 목록 및 키보드 단축키
여기 최신 GitHub Copilot 단축키 시트가 있습니다. 이 문서는 Visual Studio Code와 Copilot Chat을 위한 필수 단축키, 명령어, 사용 팁, 컨텍스트 기능을 다룹니다.
소프트웨어 엔지니어링 도구 및 언어 비교
The Pragmatic Engineer 뉴스레터가 며칠 전에 발표한 설문 조사 통계에 따르면, 2025년 중반의 프로그래밍 언어, IDE, AI 도구의 인기 및 기타 데이터가 포함되어 있습니다.
2025년 7월에 곧 제공될 예정입니다.
NVIDIA는 곧 NVIDIA DGX Spark를 출시할 예정입니다. 이는 Blackwell 아키텍처를 기반으로 한 소형 AI 슈퍼컴퓨터로, 128GB 이상의 통합 RAM과 1 PFLOPS의 AI 성능을 제공합니다. LLM을 실행하는 데 매우 적합한 장비입니다.
MCP 사양과 GO에서의 구현에 대한 장문의 글
여기에는 **Model Context Protocol (MCP)**에 대한 설명과 Go로 작성된 MCP 서버를 구현하는 방법에 대한 간단한 노트, 메시지 구조 및 프로토콜 명세가 포함되어 있습니다.
RAG을 구현 중이시다면? 여기 Go 코드 예제가 있습니다 - 2...
표준 Ollama에는 직접적인 재정렬 API가 없기 때문에, 쿼리-문서 쌍의 임베딩을 생성하고 이를 점수화하여 Qwen3 재정렬기 사용으로 재정렬하기(GO)를 구현해야 합니다.
얼마 전에 저는 객체 감지 AI를 훈련시켰습니다.
한 여름의 추운 날, 호주에서는 여름이 아니라 겨울이죠…
AI 모델을 훈련하여 비캡된 콘크리트 강화 철근을 감지하는 것이 급한 필요성을 느꼈습니다…
qwen3 8b, 14b 및 30b, devstral 24b, mistral small 24b
이 테스트에서는 Ollama에 호스팅된 다양한 LLM이 Hugo 페이지를 영어에서 독일어로 번역하는 방법을 비교하고 있습니다. https://www.glukhov.org/ko/post/2025/06/translation-quality-comparison-llms-on-ollama/ "comparison how different LLMs hosted on Ollama translate Hugo page from English to German"
.
테스트한 세 페이지는 서로 다른 주제를 다루고 있으며, 마크다운 형식으로 구성되어 있습니다. 헤더, 목록, 표, 링크 등이 포함되어 있습니다.
RAG을 구현 중이시다면, 여기 Golang에서 사용할 수 있는 코드 스니펫 몇 가지가 있습니다.
이 작은
Reranking Go 코드 예제는 Ollama를 호출하여 쿼리와 각 후보 문서에 대한 임베딩을 생성
그런 다음 코사인 유사도에 따라 내림차순으로 정렬합니다.
Ollama에 새로운 훌륭한 LLM이 출시되었습니다.
Qwen3 Embedding 및 Reranker 모델은 Qwen 가족의 최신 출시물로, 고급 텍스트 임베딩, 검색 및 재정렬 작업에 특화되어 있습니다.
AI는 많은 전력을 필요로 합니다...
현대 세계의 혼란 속에서 여기서 저는 다른 카드의 기술 사양을 비교를 AI 작업에 적합한 것으로 비교하고 있습니다.
(Deep Learning,
Object Detection
및 LLMs).
그러나 모두 매우 비싸네요.
이 트렌디한 AI 지원 코딩이란 무엇인가?
바이브 코딩은 개발자가 자연어로 원하는 기능을 설명하고, AI 도구가 이를 자동으로 코드로 생성하는 AI 기반의 프로그래밍 접근 방식입니다.
MM* 도구의 전체 세트는 EOL에 도달했습니다...
저는 MMDetection (mmengine, mdet, mmcv)를 꽤 많이 사용해왔고,
이제는 그게 게임에서 벗어났다는 것 같네요.
유감스럽습니다. 저는 그 모델 저장소를 좋아했습니다.
두 개의 deepseek-r1 모델을 두 개의 기본 모델과 비교합니다.
DeepSeek’s 첫 번째 세대의 추론 모델로, OpenAI-o1과 유사한 성능을 보입니다. 이 모델은 Llama와 Qwen을 기반으로 한 DeepSeek-R1에서 압축한 6개의 밀집 모델입니다.
얼마 전에 이 올라마 명령어 목록을 정리한 적이 있었죠...
이 문서는 가장 유용한 Ollama 명령어 목록과 예시를 제공합니다(Ollama 명령어 참고서)
이전에 제가 정리한 내용입니다.
당신에게도 유용할 것으로 기대합니다(여기로 이동).
LLM 테스트 다음 라운드
얼마 전에 출시되었습니다. 지금 바로 확인하고
다른 LLM과 비교하여 Mistral Small의 성능을 테스트해보세요.