
MLOPS 및 ETL을 위한 Apache Airflow - 설명, 장점 및 예시
파이썬을 사용한 ETS/MLOPS에 적합한 프레임워크
Apache Airflow은 프로그래밍적으로 워크플로우를 작성, 예약 및 모니터링할 수 있는 오픈소스 플랫폼으로, 완전히 파이썬 코드로 작성되어 전통적인, 수동적, 또는 UI 기반 워크플로우 도구보다 유연하고 강력한 대안을 제공합니다.
파이썬을 사용한 ETS/MLOPS에 적합한 프레임워크
Apache Airflow은 프로그래밍적으로 워크플로우를 작성, 예약 및 모니터링할 수 있는 오픈소스 플랫폼으로, 완전히 파이썬 코드로 작성되어 전통적인, 수동적, 또는 UI 기반 워크플로우 도구보다 유연하고 강력한 대안을 제공합니다.
얼마 전에 저는 객체 감지 AI를 훈련시켰습니다.
한 여름의 추운 날, 호주에서는 여름이 아니라 겨울이죠…
AI 모델을 훈련하여 비캡된 콘크리트 강화 철근을 감지하는 것이 급한 필요성을 느꼈습니다…
LLM을 위해 두 번째 GPU를 설치하는 것을 고려 중이십니까?
PCIe 랜의 수가 LLM 성능에 미치는 영향? 작업에 따라 다릅니다. 훈련 및 다중 GPU 추론의 경우 성능 저하가 상당합니다.
AI는 많은 전력을 필요로 합니다...
현대 세계의 혼란 속에서 여기서 저는 다른 카드의 기술 사양을 비교를 AI 작업에 적합한 것으로 비교하고 있습니다.
(Deep Learning,
Object Detection
및 LLMs).
그러나 모두 매우 비싸네요.
MM* 도구의 전체 세트는 EOL에 도달했습니다...
저는 MMDetection (mmengine, mdet, mmcv)를 꽤 많이 사용해왔고,
이제는 그게 게임에서 벗어났다는 것 같네요.
유감스럽습니다. 저는 그 모델 저장소를 좋아했습니다.