RAG

Выбор правильного LLM для Cognee: настройка локального Ollama

Выбор правильного LLM для Cognee: настройка локального Ollama

Размышления об использовании больших языковых моделей для саморазмещаемого Cognee

Выбор лучшей LLM для Cognee требует баланса между качеством построения графов, уровнем галлюцинаций и ограничениями оборудования. Cognee лучше всего работает с крупными моделями с низким уровнем галлюцинаций (32B+) через Ollama, но средние по размеру варианты подходят для более легких настроек.

API веб-поиска Ollama в Python

API веб-поиска Ollama в Python

AI-поисковые агенты с помощью Python и Ollama

Библиотека Python для Ollama теперь включает в себя нативные возможности поиска в интернете с Ollama. С несколькими строками кода вы можете дополнить свои локальные LLMs актуальной информацией из интернета, снижая вероятность галлюцинаций и повышая точность.

Сравнение векторных хранилищ для RAG

Сравнение векторных хранилищ для RAG

Выберите подходящую векторную базу данных для вашего стека RAG

Выбор правильного векторного хранилища может существенно повлиять на производительность, стоимость и масштабируемость вашего приложения RAG. Это всестороннее сравнение охватывает наиболее популярные варианты в 2024-2025 годах.

API веб-поиска Ollama в Go

API веб-поиска Ollama в Go

AI-поисковые агенты с использованием Go и Ollama

Ollama’s Web Search API позволяет дополнять локальные LLMs актуальной информацией из интернета. Это руководство показывает, как реализовать возможности веб-поиска на Go, от простых API-запросов до полнофункциональных поисковых агентов.

Размещение локальных языковых моделей: Полное руководство на 2025 год - Ollama, vLLM, LocalAI, Jan, LM Studio и другие

Размещение локальных языковых моделей: Полное руководство на 2025 год - Ollama, vLLM, LocalAI, Jan, LM Studio и другие

Освойте локальное развертывание языковых моделей с сравнением 12+ инструментов

Локальное развертывание LLMs стало increasingly popular, так как разработчики и организации стремятся к повышенной конфиденциальности, снижению задержек и большему контролю над своей инфраструктурой ИИ.

Инфраструктура ИИ на потребительском оборудовании

Инфраструктура ИИ на потребительском оборудовании

Развертывание корпоративного ИИ на бюджетном оборудовании с открытыми моделями

Демократизация ИИ уже здесь. С открытыми моделями ИИ с открытым исходным кодом, такими как Llama 3, Mixtral и Qwen, которые теперь соперничают с проприетарными моделями, команды могут создавать мощную инфраструктуру ИИ с использованием потребительского оборудования - снижая затраты, сохраняя при этом полный контроль над конфиденциальностью данных и развертыванием.

Преобразование HTML в Markdown с помощью Python: Полное руководство

Преобразование HTML в Markdown с помощью Python: Полное руководство

Python для преобразования HTML в чистый, готовый для LLM Markdown

Преобразование HTML в Markdown — это фундаментальная задача в современных разработческих процессах, особенно при подготовке веб-контента для больших языковых моделей (LLM), систем документации или статических генераторов сайтов, таких как Hugo.

Сравнение: Qwen3:30b против GPT-OSS:20b

Сравнение: Qwen3:30b против GPT-OSS:20b

Сравнение скорости, параметров и производительности этих двух моделей

Вот сравнение между Qwen3:30b и GPT-OSS:20b с акцентом на выполнение инструкций и параметры производительности, спецификации и скорость:

Сравнение структурированного вывода среди популярных поставщиков LLM — OpenAI, Gemini, Anthropic, Mistral и AWS Bedrock

Сравнение структурированного вывода среди популярных поставщиков LLM — OpenAI, Gemini, Anthropic, Mistral и AWS Bedrock

Немного отличающиеся API требуют особого подхода.

Вот сравнение поддержки структурированного вывода (получение надежного JSON) среди популярных поставщиков LLM, а также минимальные примеры на Python

LLM и структурированный вывод: Ollama, Qwen3 & Python или Go

LLM и структурированный вывод: Ollama, Qwen3 & Python или Go

Несколько способов получения структурированного вывода из Ollama

Большие языковые модели (LLM) мощные, но в производстве мы редко хотим свободноформатных абзацев. Вместо этого нам нужны предсказуемые данные: атрибуты, факты или структурированные объекты, которые можно передать в приложение. Это Структурированный вывод LLM.

Переранжирование документов с использованием Ollama и модели Qwen3 Reranker - на языке Go

Переранжирование документов с использованием Ollama и модели Qwen3 Reranker - на языке Go

Реализуете RAG? Вот несколько фрагментов кода на Go - 2...

Поскольку стандартный Ollama не имеет прямого API для переупорядочивания, вам нужно реализовать переупорядочивание с использованием Qwen3 Reranker на GO, генерируя векторы представлений для пар запрос-документ и оценивая их.