RAG

Самостоятельное развертывание LLM и суверенитет ИИ

Самостоятельное развертывание LLM и суверенитет ИИ

Управляйте данными и моделями с помощью самодостаточных ЛЛМ

Размещение ЛЛМ на собственных серверах позволяет контролировать данные, модели и вычисления — практический путь к суверенитету ИИ для команд, предприятий и стран. Здесь мы расскажем, что такое суверенный ИИ, какие аспекты и методы используются для его создания, как размещение ЛЛМ на собственных серверах вписывается в эту концепцию и как страны решают эту задачу.

Топ-19 актуальных проектов на Go в GitHub — январь 2026 года

Топ-19 актуальных проектов на Go в GitHub — январь 2026 года

Трендовые Go-репозитории января 2026

Экосистема Go продолжает процветать с инновационными проектами, охватывающими инструменты ИИ, самоуправляемые приложения и инфраструктуру разработчиков. Этот обзор анализирует самые популярные репозитории Go на GitHub в этом месяце.

Выбор правильного LLM для Cognee: настройка локального Ollama

Выбор правильного LLM для Cognee: настройка локального Ollama

Размышления об использовании больших языковых моделей для саморазмещаемого Cognee

Выбор лучшей LLM для Cognee требует баланса между качеством построения графов, уровнем галлюцинаций и ограничениями оборудования. Cognee лучше всего работает с крупными моделями с низким уровнем галлюцинаций (32B+) через Ollama, но средние по размеру варианты подходят для более легких настроек.

API веб-поиска Ollama в Python

API веб-поиска Ollama в Python

AI-поисковые агенты с помощью Python и Ollama

Библиотека Python для Ollama теперь включает в себя нативные возможности поиска в интернете с Ollama. С несколькими строками кода вы можете дополнить свои локальные LLMs актуальной информацией из интернета, снижая вероятность галлюцинаций и повышая точность.

Сравнение векторных хранилищ для RAG

Сравнение векторных хранилищ для RAG

Выберите подходящую векторную базу данных для вашего стека RAG

Выбор правильного векторного хранилища может существенно повлиять на производительность, стоимость и масштабируемость вашего приложения RAG. Это всестороннее сравнение охватывает наиболее популярные варианты в 2024-2025 годах.

API веб-поиска Ollama в Go

API веб-поиска Ollama в Go

AI-поисковые агенты с использованием Go и Ollama

Ollama’s Web Search API позволяет дополнять локальные LLMs актуальной информацией из интернета. Это руководство показывает, как реализовать возможности веб-поиска на Go, от простых API-запросов до полнофункциональных поисковых агентов.

Локальное хостинг LLM: Полное руководство на 2026 год - Ollama, vLLM, LocalAI, Jan, LM Studio и другие

Локальное хостинг LLM: Полное руководство на 2026 год - Ollama, vLLM, LocalAI, Jan, LM Studio и другие

Освойте локальное развертывание языковых моделей с помощью сравнения 12+ инструментов

Локальное развертывание LLMs (https://www.glukhov.org/ru/llm-hosting/comparisons/hosting-llms-ollama-localai-jan-lmstudio-vllm-comparison/ “Локальное развертывание крупных языковых моделей”) стало все более популярным, поскольку разработчики и организации стремятся к повышенной конфиденциальности, снижению задержек и большему контролю над своей инфраструктурой ИИ.

Инфраструктура ИИ на потребительском оборудовании

Инфраструктура ИИ на потребительском оборудовании

Развертывание корпоративного ИИ на бюджетном оборудовании с открытыми моделями

Демократизация ИИ уже здесь. С открытыми моделями ИИ с открытым исходным кодом, такими как Llama 3, Mixtral и Qwen, которые теперь соперничают с проприетарными моделями, команды могут создавать мощную инфраструктуру ИИ с использованием потребительского оборудования - снижая затраты, сохраняя при этом полный контроль над конфиденциальностью данных и развертыванием.

Преобразование HTML в Markdown с помощью Python: Полное руководство

Преобразование HTML в Markdown с помощью Python: Полное руководство

Python для преобразования HTML в чистый, готовый для LLM Markdown

Преобразование HTML в Markdown — это фундаментальная задача в современных разработческих процессах, особенно при подготовке веб-контента для больших языковых моделей (LLM), систем документации или статических генераторов сайтов, таких как Hugo.

Сравнение: Qwen3:30b против GPT-OSS:20b

Сравнение: Qwen3:30b против GPT-OSS:20b

Сравнение скорости, параметров и производительности этих двух моделей

Вот сравнение между Qwen3:30b и GPT-OSS:20b с акцентом на выполнение инструкций и параметры производительности, спецификации и скорость: