Ollama

올라마 엔시티피케이션 - 초기 징후

올라마 엔시티피케이션 - 초기 징후

현재 Ollama 개발의 상태에 대한 제 관점

Ollama은 LLM을 로컬에서 실행하는 데 사용되는 가장 인기 있는 도구 중 하나로 빠르게 자리 잡았습니다.
간단한 CLI와 간소화된 모델 관리 기능 덕분에, 클라우드 외부에서 AI 모델을 사용하고자 하는 개발자들에게 필수적인 선택지가 되었습니다.
하지만 많은 유망한 플랫폼과 마찬가지로, 이미 **Enshittification**의 징후가 나타나고 있습니다.

로컬 올라마 인스턴스의 채팅 UI

로컬 올라마 인스턴스의 채팅 UI

2025년 올라마의 가장 두드러진 UI에 대한 간략한 개요

로컬에서 호스팅된 Ollama는 대형 언어 모델을 자신의 컴퓨터에서 실행할 수 있게 해줍니다. 하지만 명령줄을 통해 사용하는 것은 사용자 친화적이지 않습니다. 다음은 로컬 Ollama에 연결되는 **ChatGPT 스타일의 인터페이스**를 제공하는 여러 오픈 소스 프로젝트입니다.

Hugo 페이지 번역 품질 비교 - Ollama 상의 LLMs

Hugo 페이지 번역 품질 비교 - Ollama 상의 LLMs

qwen3 8b, 14b 및 30b, devstral 24b, mistral small 24b

이 테스트에서는 Ollama에 호스팅된 다양한 LLM이 Hugo 페이지를 영어에서 독일어로 번역하는 방법을 비교하고 있습니다. https://www.glukhov.org/ko/post/2025/06/translation-quality-comparison-llms-on-ollama/ "comparison how different LLMs hosted on Ollama translate Hugo page from English to German".

테스트한 세 페이지는 서로 다른 주제를 다루고 있으며, 마크다운 형식으로 구성되어 있습니다. 헤더, 목록, 표, 링크 등이 포함되어 있습니다.

Ollama가 병렬 요청을 처리하는 방식

Ollama가 병렬 요청을 처리하는 방식

ollama를 사용하여 병렬 요청 실행을 구성합니다.

Ollama 서버가 동일한 시간에 두 개의 요청을 받을 경우, 그 동작은 구성 설정과 사용 가능한 시스템 자원에 따라 달라집니다.

Ollama에서 Deepseek-R1 테스트

Ollama에서 Deepseek-R1 테스트

두 개의 deepseek-r1 모델을 두 개의 기본 모델과 비교합니다.

DeepSeek’s 첫 번째 세대의 추론 모델로, OpenAI-o1과 유사한 성능을 보입니다. 이 모델은 Llama와 Qwen을 기반으로 한 DeepSeek-R1에서 압축한 6개의 밀집 모델입니다.