AI

AI 슬롭 감지: 기술과 주의점

AI 슬롭 감지: 기술과 주의점

AI 생성 콘텐츠 감지 기술 가이드

AI 생성 콘텐츠의 확산은 새로운 도전을 만들었습니다: 진짜 인간의 글과 “AI slop” - 질이 낮고, 대량 생산된 합성 텍스트를 구분하는 것.

자체 호스팅 Cognee: LLM 성능 테스트

자체 호스팅 Cognee: LLM 성능 테스트

로컬 LLM을 사용하여 Cognee 테스트 - 실제 결과

Cognee는 문서에서 지식 그래프를 생성하기 위한 Python 프레임워크입니다. 하지만 이 프레임워크는 자체 호스팅된 모델과 호환되는가요?

BAML 대 교수: 구조화된 LLM 출력

BAML 대 교수: 구조화된 LLM 출력

BAML 및 Instructor를 활용한 타입 안전한 LLM 출력

대규모 언어 모델(Large Language Models, LLM)을 프로덕션 환경에서 사용할 때, 구조화된 타입 안전한 출력을 얻는 것은 매우 중요합니다.
인기 있는 두 프레임워크인 BAML 및 Instructor은 이 문제를 해결하기 위해 서로 다른 접근 방식을 사용합니다.

Cognee를 위한 적절한 LLM 선택: 로컬 Ollama 설정

Cognee를 위한 적절한 LLM 선택: 로컬 Ollama 설정

자체 호스팅된 Cognee를 위한 LLM에 대한 고찰

Best LLM for Cognee을 선택할 때는 그래프 생성의 품질, 환상 발생률, 하드웨어 제약을 균형 있게 고려해야 합니다. Cognee는 Ollama를 통해 32B 이상의 낮은 환상률 모델을 사용하여 우수한 성능을 보이지만, 가벼운 설정에서는 중간 크기의 모델도 사용할 수 있습니다.

Jupyter Notebook 참고 자료

Jupyter Notebook 참고 자료

필수 단축키 및 마법 명령어

Jupyter Notebook 생산성을 극대화하기 위해 필수적인 단축키, 마직기 명령어 및 워크플로우 팁을 활용해 보세요. 이는 데이터 과학 및 개발 경험을 획기적으로 개선할 것입니다.

파이썬에서 Ollama Web Search API 사용하기

파이썬에서 Ollama Web Search API 사용하기

파이썬과 올라마로 AI 검색 에이전트를 구축하세요.

Ollama의 Python 라이브러리는 이제 네이티브 OLlama 웹 검색 기능을 포함하고 있습니다. 몇 줄의 코드만으로도, 실시간 인터넷 정보를 사용하여 로컬 LLM을 보완할 수 있고, 환각을 줄이고 정확도를 향상시킬 수 있습니다.

RAG 비교를 위한 벡터 저장소

RAG 비교를 위한 벡터 저장소

적절한 벡터 DB를 선택하여 RAG 스택 구축하기

정확한 벡터 저장소 선택은 RAG 애플리케이션의 성능, 비용, 확장성에 큰 영향을 미칩니다. 이 포괄적인 비교는 2024-2025년에 가장 인기 있는 옵션들을 다룹니다.

AI/ML 오케스트레이션을 위한 Go 마이크로서비스

AI/ML 오케스트레이션을 위한 Go 마이크로서비스

Go 마이크로서비스를 사용하여 견고한 AI/ML 파이프라인을 구축하세요.

AI 및 머신러닝 워크로드가 점점 복잡해지면서, 견고한 오케스트레이션 시스템의 필요성이 더욱 커졌습니다. Go의 간결성, 성능, 동시성은 ML 파이프라인의 오케스트레이션 레이어를 구축하는 데 이상적인 선택이 됩니다. 모델 자체가 파이썬으로 작성되어 있더라도 말이죠.

소비자 하드웨어 상의 AI 인프라

소비자 하드웨어 상의 AI 인프라

예산 하드웨어에 오픈 모델을 사용하여 기업용 AI를 배포하세요.

AI의 민주화 시대가 도래했습니다.
Llama 3, Mixtral, Qwen과 같은 오픈소스 LLM이 이제는 전용 모델과 경쟁할 수 있을 정도로 발전했으며, 팀은 소비자 하드웨어를 사용하여 강력한 AI 인프라를 구축할 수 있습니다. 이는 비용을 절감하면서도 데이터 프라이버시와 배포에 대한 완전한 통제를 유지할 수 있습니다.

Python에서 FLUX.1-dev GGUF Q8 실행

Python에서 FLUX.1-dev GGUF Q8 실행

GGUF 양자화로 FLUX.1-dev 가속화

FLUX.1-dev 은 텍스트에서 이미지를 생성하는 강력한 모델로, 놀라운 결과를 제공하지만 24GB 이상의 메모리 요구 사항으로 인해 많은 시스템에서 실행하기 어렵습니다. GGUF quantization of FLUX.1-dev 은 메모리 사용량을 약 50% 줄이며 우수한 이미지 품질을 유지하는 해결책을 제공합니다.