Goワークスペース構成: GOPATHからgo.workへ
現代的なワークスペースでGoプロジェクトを効率的に整理しましょう
Goプロジェクトの管理を効果的に行うには、ワークスペースがコード、依存関係、およびビルド環境をどのように整理しているかを理解する必要があります。
現代的なワークスペースでGoプロジェクトを効率的に整理しましょう
Goプロジェクトの管理を効果的に行うには、ワークスペースがコード、依存関係、およびビルド環境をどのように整理しているかを理解する必要があります。
スケーラビリティと明確性のためにGoプロジェクトを構成しましょう
Goプロジェクトの構成は、長期的な保守性、チームの協力、スケーラビリティにとって基本的な要素です。フレームワークが厳格なディレクトリ構造を強制するのとは異なり、Goは柔軟性を重視していますが、その自由にはプロジェクトの特定のニーズに応じたパターンを選択する責任が伴います。
テスト可能なGoコードのためのDIパターンをマスターする
依存性注入 (DI) は、Goアプリケーションにおいてクリーンでテスト可能で保守可能なコードを促進する基本的な設計パターンです。
Goのテストを並列実行で高速化する
テーブル駆動テストは、Goで複数のシナリオを効率的にテストするための標準的なアプローチです。t.Parallel()を使用して並列実行を組み合わせることで、特にI/Oバウンドの操作ではテストスイートの実行時間を大幅に短縮できます。
GoとOllamaを使ってAI検索エージェントを構築する
OllamaのWeb検索APIは、ローカルLLMにリアルタイムのウェブ情報を補完する機能を提供します。このガイドでは、GoでのWeb検索の実装について、単純なAPI呼び出しからフル機能の検索エージェントまでの実装方法を示します。
コードの注釈から自動生成されたOpenAPIドキュメント
APIドキュメンテーションは、現代のアプリケーションにおいて非常に重要です。Go API Swagger(OpenAPI)は、業界標準となっています。Go開発者にとって、swaggoはコードの注釈から包括的なAPIドキュメンテーションを生成するための洗練されたソリューションを提供します。
リナーアと自動化でGoコードの品質をマスターしましょう
現代のGo開発は厳格なコード品質基準を要求しています。Go用のリントツールは、コードが本番環境に到達する前にバグやセキュリティの脆弱性、スタイルの不一致を自動検出します。
Goマイクロサービスを使用して堅牢なAI/MLパイプラインを構築しましょう
AIおよび機械学習(ML)ワークロードがますます複雑になるにつれて、強固なオーケストレーションシステムの必要性が高まっています。Goのシンプルさ、パフォーマンス、並行処理能力は、MLパイプラインのオーケストレーションレイヤーを構築する際に理想的な選択肢です。モデル自体がPythonで書かれている場合でも、Goは理想的な選択肢です。https://www.glukhov.org/ja/post/2025/11/go-microservices-for-ai-ml-orchestration-patterns/ “Go in ML orchestration pipelines”。
Goの堅牢なエコシステムを使って、本番環境に適したREST APIを構築しましょう。
高性能な REST APIの構築(Goを使用) は、Google、Uber、Dropbox、そして多数のスタートアップでシステムを動かすための標準的なアプローチとなっています。
Goのテスト入門から高度なパターンまで
Goの組み込みテストパッケージ は、外部依存なしでユニットテストを書くための強力でミニマリストなフレームワークを提供しています。 ここでは、テストの基本、プロジェクト構造、そして信頼性の高いGoアプリケーションを構築するための高度なパターンについて説明します。
マイクロサービスにおけるサガパターンによるトランザクション
Saga パターン
は、分散トランザクションを一連のローカルトランザクションと補償アクションに分割することで、洗練された解決策を提供します。
Goジェネリクスによる型安全な再利用可能なコード
Goのジェネリクスは、Go 1.0以降で追加された最も重要な言語機能の一つです。Go 1.18で導入されたジェネリクスにより、パフォーマンスやコードの明確性を犠牲にすることなく、複数の型で動作する型安全で再利用可能なコードを書くことが可能になりました。
マルチテナントデータベースパターンの完全ガイド
マルチテナント は、SaaS アプリケーションのための基本的なアーキテクチャパターンであり、複数の顧客(テナント)が同じアプリケーションインフラストラクチャを共有しながらも、データの分離を維持することが可能です。
GoでCobraとViperフレームワークを使用したCLI開発
コマンドラインインターフェース(CLI)アプリケーションは、開発者、システム管理者、DevOpsプロフェッショナルにとって不可欠なツールです。 Go言語でCLIを開発するための2つのライブラリが、CLI開発におけるGoの標準として広く採用されています:コマンド構造にはCobra、設定管理にはViper。
スケーラビリティに優れたAWS Kinesisを活用したイベント駆動型アーキテクチャ
AWS Kinesis は、現代のイベント駆動型マイクロサービスアーキテクチャを構築するための基盤として、最小限の運用負荷で大規模なリアルタイムデータ処理を可能にしています。
Dev Containersを使用して、一貫性があり、移動可能で、再現可能な開発環境を構築しましょう。
開発者は、依存関係の不一致、ツールのバージョン、またはOSの違いにより、「私のマシンでは動く」というジレンマに直面することがよくあります。 Visual Studio Code (VS Code) での Dev Containers は、この問題をエレガントに解決します — あなたのプロジェクトに特化した コンテナ化された環境 で開発できるようにするからです。