LLM

Rilevare l'AI Slop: Tecniche & Segnali di Allarme

Rilevare l'AI Slop: Tecniche & Segnali di Allarme

Guida tecnica per la rilevazione del contenuto generato da AI

La proliferazione del contenuto generato dall’IA ha creato una nuova sfida: distinguere la scrittura umana autentica da “AI slop” - testo sintetico di bassa qualità, prodotto in massa.

BAML vs Insegnante: Output di LLM Strutturati

BAML vs Insegnante: Output di LLM Strutturati

Output sicuri dal punto di vista del tipo di LLM con BAML e Instructor

Quando si lavora con i Large Language Models in produzione, ottenere output strutturati e sicuri dal punto di vista dei tipi è fondamentale. Due framework popolari - BAML e Instructor - adottano approcci diversi per risolvere questo problema.

Confronto tra Vector Stores per RAG

Confronto tra Vector Stores per RAG

Scegli il database vettoriale giusto per il tuo stack RAG

Scegliere il giusto archivio vettoriale può fare la differenza tra il successo e il fallimento delle prestazioni, dei costi e della scalabilità dell’applicazione RAG. Questo confronto completo copre le opzioni più popolari del 2024-2025.

Go Microservices per l'Orchestrazione AI/ML

Go Microservices per l'Orchestrazione AI/ML

Costruisci pipeline AI/ML robuste con microservizi Go

Con l’aumento della complessità dei carichi di lavoro di AI e ML, è diventato più urgente il bisogno di sistemi di orchestrazione robusti. La semplicità, le prestazioni e la concorrenza di Go lo rendono una scelta ideale per costruire lo strato di orchestrazione dei pipeline ML, anche quando i modelli stessi sono scritti in Python.

Infrastruttura AI su Hardware Consumer

Infrastruttura AI su Hardware Consumer

Distribuisci l'AI aziendale su hardware a basso costo con modelli open source

La democratizzazione dell’AI è arrivata. Con modelli open source come Llama 3, Mixtral e Qwen che ora competono con i modelli proprietari, i team possono costruire potenti infrastrutture AI utilizzando hardware consumer - riducendo i costi mentre mantengono il pieno controllo sulla privacy dei dati e sull’implementazione.

Esecuzione di FLUX.1-dev GGUF Q8 in Python

Esecuzione di FLUX.1-dev GGUF Q8 in Python

Accelerare FLUX.1-dev con la quantizzazione GGUF

FLUX.1-dev è un potente modello di generazione di immagini da testo che produce risultati straordinari, ma il suo requisito di memoria di 24GB+ rende difficile il suo utilizzo su molti sistemi. Quantizzazione GGUF di FLUX.1-dev offre una soluzione, riducendo l’utilizzo della memoria del circa 50% mantenendo comunque una buona qualità delle immagini.