Migliori LLM per Ollama su GPU con 16 GB di VRAM

Test della velocità del modello LLM sull'RTX 4080 con 16 GB di VRAM

Indice

Eseguire grandi modelli linguistici localmente ti offre privacy, capacità offline e zero costi API. Questo benchmark rivela esattamente cosa si può aspettare da 9 modelli popolari LLMs su Ollama su un RTX 4080.

Con una GPU da 16 GB di VRAM, ho affrontato un costante compromesso: modelli più grandi con potenziale qualità migliore, o modelli più piccoli con inferenza più veloce.

7 llamas - Confronto tra LLM su Ollama

TL;DR

Ecco la tabella di confronto delle prestazioni dei modelli LLM su RTX 4080 16 GB con Ollama 0.15.2:

Modello RAM+VRAM Utilizzata CPU/GPU Split Token/sec
gpt-oss:20b 14 GB 100% GPU 139.93
ministral-3:14b 13 GB 100% GPU 70.13
qwen3:14b 12 GB 100% GPU 61.85
qwen3-vl:30b-a3b 22 GB 30%/70% 50.99
glm-4.7-flash 21 GB 27%/73% 33.86
nemotron-3-nano:30b 25 GB 38%/62% 32.77
devstral-small-2:24b 19 GB 18%/82% 18.67
mistral-small3.2:24b 19 GB 18%/82% 18.51
gpt-oss:120b 66 GB 78%/22% 12.64

Osservazione chiave: I modelli che si adattano completamente alla VRAM sono drasticamente più veloci. Il GPT-OSS 20B raggiunge 139,93 token/sec, mentre il GPT-OSS 120B con un forte offloading della CPU procede a 12,64 token/sec, una differenza di velocità di 11 volte.

Configurazione Hardware del Test

Il benchmark è stato condotto sul seguente sistema:

  • GPU: NVIDIA RTX 4080 con 16 GB di VRAM
  • CPU: Intel Core i7-14700 (8 P-core + 12 E-core)
  • RAM: 64 GB DDR5-6000

Questo rappresenta una configurazione comune di alto livello per l’inferenza locale dei modelli LLM. La VRAM da 16 GB è il vincolo critico—determina quali modelli vengono eseguiti interamente sulla GPU rispetto a quelli che richiedono l’offloading della CPU.

Comprendere come Ollama utilizza i core CPU di Intel diventa importante quando i modelli superano i limiti di VRAM, poiché le prestazioni della CPU influiscono direttamente sulla velocità dell’inferenza dei livelli offloadati.

Obiettivo di questo Benchmark

L’obiettivo principale era misurare la velocità dell’inferenza in condizioni reali. Sapevo già per esperienza che il Mistral Small 3.2 24B eccelle nella qualità del linguaggio, mentre il Qwen3 14B offre un’eccezionale capacità di seguire le istruzioni per i miei casi d’uso specifici.

Questo benchmark risponde alla domanda pratica: Quanto velocemente può generare testo ogni modello e qual è la penalità di velocità per superare i limiti di VRAM?

I parametri del test erano:

  • Dimensione del contesto: 19.000 token
  • Prompt: “confronta clima e meteo tra le capitali dell’Australia”
  • Metrica: velocità di valutazione (token al secondo durante la generazione)

Installazione e Versione di Ollama

Tutti i test hanno utilizzato Ollama versione 0.15.2, l’ultima versione rilasciata al momento del test. Per un riferimento completo dei comandi Ollama utilizzati in questo benchmark, vedi la guida Ollama.

Per installare Ollama su Linux:

curl -fsSL https://ollama.com/install.sh | sh

Verifica l’installazione:

ollama --version

Se devi archiviare i modelli su un disco diverso a causa di limiti di spazio, consulta come spostare i modelli Ollama su un disco diverso.

Modelli Testati

I seguenti modelli sono stati sottoposti a benchmark:

Modello Parametri Quantizzazione Note
gpt-oss:20b 20B Q4_K_M Più veloce complessivamente
gpt-oss:120b 120B Q4_K_M Più grande testato
qwen3:14b 14B Q4_K_M Migliore capacità di seguire le istruzioni
qwen3-vl:30b-a3b 30B Q4_K_M Capace di visione
ministral-3:14b 14B Q4_K_M Modello efficiente di Mistral
mistral-small3.2:24b 24B Q4_K_M Qualità linguistica forte
devstral-small-2:24b 24B Q4_K_M Focalizzato sul codice
glm-4.7-flash 30B Q4_K_M Modello di pensiero
nemotron-3-nano:30b 30B Q4_K_M Offerta di NVIDIA

Per scaricare qualsiasi modello:

ollama pull gpt-oss:20b
ollama pull qwen3:14b

Comprendere l’offloading della CPU

Quando i requisiti di memoria di un modello superano la VRAM disponibile, Ollama distribuisce automaticamente i livelli del modello tra GPU e RAM del sistema. L’output mostra questo come una percentuale di suddivisione come “18%/82% CPU/GPU”.

Questo ha enormi implicazioni per le prestazioni. Ogni generazione di token richiede il trasferimento di dati tra la memoria della CPU e della GPU—un collo di bottiglia che si accumula con ogni livello offloadato sulla CPU.

Il pattern è chiaro dai nostri risultati:

  • Modelli al 100% sulla GPU: 61-140 token/sec
  • Modelli al 70-82% sulla GPU: 19-51 token/sec
  • Modelli al 22% sulla GPU (quasi tutti sulla CPU): 12,6 token/sec

Questo spiega perché un modello da 20B parametri può superare un modello da 120B di 11 volte in pratica. Se stai pianificando di servire richieste multiple contemporaneamente, comprendere come Ollama gestisce le richieste parallele diventa essenziale per la pianificazione della capacità.

Risultati Dettagliati del Benchmark

Modelli che Operano al 100% sulla GPU

GPT-OSS 20B — Il Campione di Velocità

ollama run gpt-oss:20b --verbose
/set parameter num_ctx 19000

NAME           SIZE     PROCESSOR    CONTEXT
gpt-oss:20b    14 GB    100% GPU     19000

eval count:           2856 token(s)
eval duration:        20.410517947s
eval rate:            139.93 tokens/s

A 139,93 token/sec, il GPT-OSS 20B è chiaramente il vincitore per le applicazioni che richiedono velocità. Utilizza solo 14 GB di VRAM, lasciando spazio per finestre di contesto più grandi o altri carichi di lavoro sulla GPU.

Qwen3 14B — Buon Equilibrio

ollama run qwen3:14b --verbose
/set parameter num_ctx 19000

NAME         SIZE     PROCESSOR    CONTEXT
qwen3:14b    12 GB    100% GPU     19000

eval count:           3094 token(s)
eval duration:        50.020594575s
eval rate:            61.85 tokens/s

Il Qwen3 14B offre la migliore capacità di seguire le istruzioni, con un footprint di memoria confortevole di 12 GB. A 61,85 token/sec, è sufficientemente reattivo per l’uso interattivo.

Per gli sviluppatori che integrano Qwen3 nelle applicazioni, consulta Output Strutturato degli LLM con Ollama e Qwen3 per estrarre risposte in formato JSON strutturato.

Ministral 3 14B — Veloce e Compattato

ollama run ministral-3:14b --verbose
/set parameter num_ctx 19000

NAME               SIZE     PROCESSOR    CONTEXT
ministral-3:14b    13 GB    100% GPU     19000

eval count:           1481 token(s)
eval duration:        21.11734277s
eval rate:            70.13 tokens/s

Il modello più piccolo di Mistral fornisce 70,13 token/sec mentre si adatta completamente alla VRAM. Una scelta solida quando si necessita della qualità della famiglia Mistral a massima velocità.

Modelli che Richiedono l’Offloading della CPU

Qwen3-VL 30B — Migliore Prestazione Parzialmente Offloadata

ollama run qwen3-vl:30b-a3b-instruct --verbose
/set parameter num_ctx 19000

NAME                         SIZE     PROCESSOR          CONTEXT
qwen3-vl:30b-a3b-instruct    22 GB    30%/70% CPU/GPU    19000

eval count:           1450 token(s)
eval duration:        28.439319709s
eval rate:            50.99 tokens/s

Nonostante il 30% dei livelli sulla CPU, il Qwen3-VL mantiene 50,99 token/sec—più veloce di alcuni modelli al 100% sulla GPU. La capacità visiva aggiunge versatilità per compiti multimodali.

Mistral Small 3.2 24B — Compromesso tra Qualità e Velocità

ollama run mistral-small3.2:24b --verbose
/set parameter num_ctx 19000

NAME                    SIZE     PROCESSOR          CONTEXT
mistral-small3.2:24b    19 GB    18%/82% CPU/GPU    19000

eval count:           831 token(s)
eval duration:        44.899859038s
eval rate:            18.51 tokens/s

Il Mistral Small 3.2 offre una qualità linguistica superiore ma paga un prezzo elevato in termini di velocità. A 18,51 token/sec, sembra notevolmente più lento per le chat interattive. Ne vale la pena per i compiti in cui la qualità è più importante della latenza.

GLM 4.7 Flash — Modello di Pensiero MoE

ollama run glm-4.7-flash --verbose
/set parameter num_ctx 19000

NAME                 SIZE     PROCESSOR          CONTEXT
glm-4.7-flash        21 GB    27%/73% CPU/GPU    19000

eval count:           2446 token(s)
eval duration:        1m12.239164004s
eval rate:            33.86 tokens/s

GLM 4.7 Flash è un modello Mixture of Experts da 30B-A3B—30B parametri totali con solo 3B attivi per token. Come modello “di pensiero”, genera un ragionamento interno prima delle risposte. I 33,86 token/sec includono sia i token di pensiero che quelli di output. Nonostante l’offloading della CPU, l’architettura MoE mantiene una velocità ragionevole.

GPT-OSS 120B — Il Pesante

ollama run gpt-oss:120b --verbose
/set parameter num_ctx 19000

NAME            SIZE     PROCESSOR          CONTEXT
gpt-oss:120b    66 GB    78%/22% CPU/GPU    19000

eval count:           5008 token(s)
eval duration:        6m36.168233066s
eval rate:            12.64 tokens/s

Eseguire un modello da 120B su una VRAM da 16 GB è tecnicamente possibile ma frustrante. Con il 78% sulla CPU, i 12,64 token/sec rendono l’uso interattivo frustrante. Meglio adatto al processing in batch dove la latenza non è importante.

Consigli Pratici

Per le Chat Interattive

Utilizza modelli che si adattano completamente alla VRAM:

  1. GPT-OSS 20B — Velocità massima (139,93 t/s)
  2. Ministral 3 14B — Buona velocità con la qualità di Mistral (70,13 t/s)
  3. Qwen3 14B — Migliore capacità di seguire le istruzioni (61,85 t/s)

Per un’esperienza migliore nelle chat, considera Interfacce UI Open-Source per Ollama locale.

Per il Processing in Batch

Quando la velocità è meno critica:

  • Mistral Small 3.2 24B — Qualità linguistica superiore
  • Qwen3-VL 30B — Capacità visiva e testo

Per lo Sviluppo e il Codice

Se stai costruendo applicazioni con Ollama:

Opzioni Alternative di Hosting

Se le limitazioni di Ollama ti preoccupano (vedi preoccupazioni per l’enshittification di Ollama), esplora altre opzioni nella Guida all’hosting dei modelli LLM locali o confronta Docker Model Runner vs Ollama.

Conclusione

Con 16 GB di VRAM, puoi eseguire modelli LLM capaci a velocità impressionanti—se scegli con saggezza. Le principali scoperte:

  1. Rimani all’interno dei limiti di VRAM per l’uso interattivo. Un modello da 20B a 140 token/sec supera un modello da 120B a 12 token/sec per la maggior parte degli scopi pratici.

  2. GPT-OSS 20B vince per velocità pura, ma Qwen3 14B offre il miglior equilibrio tra velocità e capacità per i compiti di seguire le istruzioni.

  3. L’offloading della CPU funziona ma aspettati ritardi di 3-10 volte. Accettabile per il processing in batch, frustrante per le chat.

  4. La dimensione del contesto importa. Il contesto da 19K utilizzato qui aumenta in modo significativo l’utilizzo della VRAM. Riduci il contesto per un migliore utilizzo della GPU.

Per la ricerca alimentata dall’AI che combina modelli LLM locali con i risultati del web, vedi Self-hosting di Perplexica con Ollama.

Risorse interne

Riferimenti esterni