AI Coding

Создание серверов MCP на Python: руководство по веб-поиску и парсингу

Создание серверов MCP на Python: руководство по веб-поиску и парсингу

Создавайте серверы MCP для ИИ-ассистентов с примерами на Python

Протокол Контекста Модели (MCP) революционизирует способ взаимодействия ИИ-ассистентов с внешними источниками данных и инструментами. В этом руководстве мы исследуем, как строить MCP-серверы на Python, с примерами, сосредоточенными на возможностях веб-поиска и парсинга.

DGX Spark против Mac Studio: сравнение цен на персональный суперкомпьютер NVIDIA для ИИ

DGX Spark против Mac Studio: сравнение цен на персональный суперкомпьютер NVIDIA для ИИ

Доступность, реальные розничные цены в шести странах и сравнение с Mac Studio.

NVIDIA DGX Spark — это реальное устройство, которое поступит в продажу 15 октября 2025 года, и оно предназначено для разработчиков CUDA, которым нужна локальная работа с LLM с интегрированным NVIDIA AI stack. Рекомендуемая розничная цена в США — $3,999; в Великобритании, Германии и Японии розничные цены выше из-за НДС и каналов сбыта. Австралийские и корейские вон пока не опубликованы широко.

Сравнение: Qwen3:30b против GPT-OSS:20b

Сравнение: Qwen3:30b против GPT-OSS:20b

Сравнение скорости, параметров и производительности этих двух моделей

Вот сравнение между Qwen3:30b и GPT-OSS:20b с акцентом на выполнение инструкций и параметры производительности, спецификации и скорость:

Сравнение структурированного вывода среди популярных поставщиков LLM — OpenAI, Gemini, Anthropic, Mistral и AWS Bedrock

Сравнение структурированного вывода среди популярных поставщиков LLM — OpenAI, Gemini, Anthropic, Mistral и AWS Bedrock

Немного отличающиеся API требуют особого подхода.

Вот сравнение поддержки структурированного вывода (получение надежного JSON) среди популярных поставщиков LLM, а также минимальные примеры на Python

LLM и структурированный вывод: Ollama, Qwen3 & Python или Go

LLM и структурированный вывод: Ollama, Qwen3 & Python или Go

Несколько способов получения структурированного вывода из Ollama

Большие языковые модели (LLM) мощные, но в производстве мы редко хотим свободноформатных абзацев. Вместо этого нам нужны предсказуемые данные: атрибуты, факты или структурированные объекты, которые можно передать в приложение. Это Структурированный вывод LLM.

Протокол контекста модели (MCP) и заметки о реализации сервера MCP на Go

Протокол контекста модели (MCP) и заметки о реализации сервера MCP на Go

Статья о спецификациях и реализации MCP на языке GO

Здесь представлено описание Протокола Контекста Модели (MCP), краткие заметки о том, как реализовать MCP сервер на Go, включая структуру сообщений и спецификации протокола.

Переранжирование документов с использованием Ollama и модели Qwen3 Reranker - на языке Go

Переранжирование документов с использованием Ollama и модели Qwen3 Reranker - на языке Go

Реализуете RAG? Вот несколько фрагментов кода на Go - 2...

Поскольку стандартный Ollama не имеет прямого API для переупорядочивания, вам нужно реализовать переупорядочивание с использованием Qwen3 Reranker на GO, генерируя векторы представлений для пар запрос-документ и оценивая их.

Переранжирование текстов с использованием Ollama и Qwen3 Embedding LLM на языке Go

Переранжирование текстов с использованием Ollama и Qwen3 Embedding LLM на языке Go

Реализуете RAG? Вот несколько фрагментов кода на языке Golang.

Этот маленький
Пример кода на Go для reranking вызывает Ollama для генерации вложений
для запроса и для каждого кандидата документа,
затем сортирует по убыванию косинусной схожести.

Vibe Coding — Значение и описание

Vibe Coding — Значение и описание

Что такое это модное кодирование с поддержкой ИИ?

Vibe coding — это подход к программированию, управляемый искусственным интеллектом, при котором разработчики описывают желаемую функциональность на естественном языке, позволяя инструментам ИИ генерировать код автоматически.