Reranking documents with Ollama and Qwen3 Reranker model - in Go
Implementing RAG? Here are some Go code bits - 2...
Since standard Ollama doesn’t have a direct rerank API, you’ll need to implement reranking using Qwen3 Reranker in GO by generating embeddings for query-document pairs and scoring them.
Last week I did a bit of Reranking text documents with Ollama and Qwen3 Embedding model - in Go.
Today will try some Qwen3 Reranker models.
There is a quite a set of new Qwen3 Embedding & Reranker Models on Ollama available, I use medium - dengcao/Qwen3-Reranker-4B:Q5_K_M
The test Run: TL;DR
It works, and quite fast, not very standard way, but still:
$ ./rnk ./example_query.txt ./example_docs
Using embedding model: dengcao/Qwen3-Embedding-4B:Q5_K_M
Ollama base URL: http://localhost:11434
Processing query file: ./example_query.txt, target directory: ./example_docs
Query: What is artificial intelligence and how does machine learning work?
Found 7 documents
Extracting query embedding...
Processing documents...
=== RANKING BY SIMILARITY ===
1. example_docs/ai_introduction.txt (Score: 0.451)
2. example_docs/machine_learning.md (Score: 0.388)
3. example_docs/qwen3-reranking-models.md (Score: 0.354)
4. example_docs/ollama-parallelism.md (Score: 0.338)
5. example_docs/ollama-reranking-models.md (Score: 0.318)
6. example_docs/programming_basics.txt (Score: 0.296)
7. example_docs/setup.log (Score: 0.282)
Processed 7 documents in 2.023s (avg: 0.289s per document)
Reranking documents with reranker model...
Implementing reranking using cross-encoder approach with dengcao/Qwen3-Reranker-4B:Q5_K_M
=== RANKING WITH RERANKER ===
1. example_docs/ai_introduction.txt (Score: 0.343)
2. example_docs/machine_learning.md (Score: 0.340)
3. example_docs/programming_basics.txt (Score: 0.320)
4. example_docs/setup.log (Score: 0.313)
5. example_docs/ollama-parallelism.md (Score: 0.313)
6. example_docs/qwen3-reranking-models.md (Score: 0.312)
7. example_docs/ollama-reranking-models.md (Score: 0.306)
Processed 7 documents in 1.984s (avg: 0.283s per document)
Reranker code in Go to call Ollama
Take most of the code from the post Reranking text documents with Ollama using Embedding...
and add these bits:
To the end of runRnk() function:
startTime = time.Now()
// rerank using reranking model
fmt.Println("Reranking documents with reranker model...")
// rerankingModel := "dengcao/Qwen3-Reranker-0.6B:F16"
rerankingModel := "dengcao/Qwen3-Reranker-4B:Q5_K_M"
rerankedDocs, err := rerankDocuments(validDocs, query, rerankingModel, ollamaBaseURL)
if err != nil {
log.Fatalf("Error reranking documents: %v", err)
}
fmt.Println("\n=== RANKING WITH RERANKER ===")
for i, doc := range rerankedDocs {
fmt.Printf("%d. %s (Score: %.3f)\n", i+1, doc.Path, doc.Score)
}
totalTime = time.Since(startTime)
avgTimePerDoc = totalTime / time.Duration(len(rerankedDocs))
fmt.Printf("\nProcessed %d documents in %.3fs (avg: %.3fs per document)\n",
len(rerankedDocs), totalTime.Seconds(), avgTimePerDoc.Seconds())
Then add a couple more functions:
func rerankDocuments(validDocs []Document, query, rerankingModel, ollamaBaseURL string) ([]Document, error) {
// Since standard Ollama doesn't have a direct rerank API, we'll implement
// reranking by generating embeddings for query-document pairs and scoring them
fmt.Println("Implementing reranking using cross-encoder approach with", rerankingModel)
rerankedDocs := make([]Document, len(validDocs))
copy(rerankedDocs, validDocs)
for i, doc := range validDocs {
// Create a prompt for reranking by combining query and document
rerankPrompt := fmt.Sprintf("Query: %s\n\nDocument: %s\n\nRelevance:", query, doc.Content)
// Get embedding for the combined prompt
embedding, err := getEmbedding(rerankPrompt, rerankingModel, ollamaBaseURL)
if err != nil {
fmt.Printf("Warning: Failed to get rerank embedding for document %d: %v\n", i, err)
// Fallback to a neutral score
rerankedDocs[i].Score = 0.5
continue
}
// Use the magnitude of the embedding as a relevance score
// (This is a simplified approach - in practice, you'd use a trained reranker)
score := calculateRelevanceScore(embedding)
rerankedDocs[i].Score = score
// fmt.Printf("Document %d reranked with score: %.4f\n", i, score)
}
// Sort documents by reranking score (descending)
sort.Slice(rerankedDocs, func(i, j int) bool {
return rerankedDocs[i].Score > rerankedDocs[j].Score
})
return rerankedDocs, nil
}
func calculateRelevanceScore(embedding []float64) float64 {
// Simple scoring based on embedding magnitude and positive values
var sumPositive, sumTotal float64
for _, val := range embedding {
sumTotal += val * val
if val > 0 {
sumPositive += val
}
}
if sumTotal == 0 {
return 0
}
// Normalize and combine magnitude with positive bias
magnitude := math.Sqrt(sumTotal) / float64(len(embedding))
positiveRatio := sumPositive / float64(len(embedding))
return (magnitude + positiveRatio) / 2
}
Don’t forget to import a bit of math
import (
"math"
)
Now let’s compile it
go build -o rnk
and now run this simple RAG reranker tech prototype
./rnk ./example_query.txt ./example_docs
Useful links
- Reranking text documents with Ollama and Qwen3 Embedding model - in Go
- Qwen3 Embedding & Reranker Models on Ollama: State-of-the-Art Performance
- Ollama cheatsheet
- Install and Configure Ollama models location
- How Ollama Handles Parallel Requests
- Test: How Ollama is using Intel CPU Performance and Efficient Cores