Self-Hosting

「Cogneeに最適なLLMの選定:ローカルでのOllamaセットアップ」

「Cogneeに最適なLLMの選定:ローカルでのOllamaセットアップ」

LLMを自社でホストするCogneeについての考察

最適なLLMの選定は、グラフ構築の品質、幻覚率、ハードウェアの制約をバランスよく考慮する必要があります。
Cogneeは、Ollama](https://www.glukhov.org/ja/post/2024/12/ollama-cheatsheet/ “Ollama cheatsheet”)を通じて32B以上の低幻覚モデルで優れたパフォーマンスを発揮しますが、軽量な構成では中規模のオプションも利用可能です。

PythonでOllama Web Search APIを使用する

PythonでOllama Web Search APIを使用する

PythonとOllamaを使ってAI検索エージェントを構築する

OllamaのPythonライブラリは、今やOLlama web searchのネイティブな機能を含んでいます。わずか数行のコードで、ローカルのLLMをインターネット上のリアルタイム情報を補完し、幻覚を減らし、正確性を向上させることができます。

RAG用ベクター ストアの比較

RAG用ベクター ストアの比較

RAGスタックに適したベクトルDBを選びましょう

正しいベクトルストアを選択することで、RAGアプリケーションの性能、コスト、拡張性が大きく左右されます。この包括的な比較では、2024年~2025年の最も人気のあるオプションをカバーしています。

GoでOllama Web Search APIを使用する

GoでOllama Web Search APIを使用する

GoとOllamaを使ってAI検索エージェントを構築する

OllamaのWeb検索APIは、ローカルLLMにリアルタイムのウェブ情報を補完する機能を提供します。このガイドでは、GoでのWeb検索の実装について、単純なAPI呼び出しからフル機能の検索エージェントまでの実装方法を示します。

RAM価格の急騰:2025年には最大619%上昇

RAM価格の急騰:2025年には最大619%上昇

RAM価格がAI需要による供給圧力で163〜619%上昇

2025年後半にかけて、メモリ市場はかつてない価格のボラティリティに直面しています。すべてのセグメントにわたってRAMの価格が急騰しており、RAM価格の急騰が深刻な状況となっています。

コンシューマーハードウェア上のAIインフラ

コンシューマーハードウェア上のAIインフラ

予算のハードウェアでオープンモデルを使用して企業向けAIを展開

AIの民主化はここにあります。 Llama 3、Mixtral、QwenなどのオープンソースLLMが、今やプロプライエタリモデルと同等の性能を発揮するようになり、チームは消費者ハードウェアを使用して強力なAIインフラストラクチャを構築できるようになりました。これにより、コストを削減しながらも、データプライバシーやデプロイメントに関する完全なコントロールを維持することが可能です。

KubernetesにおけるStatefulSetsと永続ストレージ

KubernetesにおけるStatefulSetsと永続ストレージ

順序付きスケーリングと永続的なデータを使用してステートフルなアプリを展開する

Kubernetes StatefulSets は、安定したアイデンティティ、永続的なストレージ、および順序付きデプロイメントパターンを必要とするステートフルなアプリケーションを管理するための最適なソリューションです。データベース、分散システム、キャッシュレイヤーなどに不可欠です。

PythonでFLUX.1-dev GGUF Q8を実行しています

PythonでFLUX.1-dev GGUF Q8を実行しています

GGUF量子化でFLUX.1-devを高速化

FLUX.1-dev は、驚くほど美しい画像を生成できる強力なテキストから画像生成モデルですが、24GB以上のメモリが必要なため、多くのシステムでは実行が難しいです。 GGUF量化されたFLUX.1-dev は、メモリ使用量を約50%削減しながらも、優れた画像品質を維持するという解決策を提供します。

FLUX.1-Kontext-dev: 画像拡張AIモデル

FLUX.1-Kontext-dev: 画像拡張AIモデル

テキスト指示を使って画像を拡張するためのAIモデル

ブラックフォレスト・ラボズは、FLUX.1-Kontext-devという高度な画像から画像へのAIモデルをリリースしました。このモデルは、テキストの指示を使って既存の画像を補強します。

「Strapi vs Directus vs Payload: ヘッドレスCMS比較」

「Strapi vs Directus vs Payload: ヘッドレスCMS比較」

ヘッドレスCMSの比較 - 機能、パフォーマンスおよびユースケース

正しい ヘッドレス CMS の選択は、コンテンツ管理戦略を成功させるか、失敗させるかを左右します。 開発者がコンテンツ駆動型アプリケーションを構築する方法に影響を与える3つのオープンソースソリューションを比較してみましょう。