LLMのセルフホスティングとAI主権
セルフホスティングLLMでデータとモデルを制御する
LLMを自社でホストすることで、データ、モデル、推論を自らのコントロール下に置くことが可能になります。これは、チーム、企業、国家にとって実用的な**AI主権への道です。ここでは、AI主権とは何か、どの側面と方法**で構築されるのか、LLMの自社ホスティングがどのように関与するのか、国々がこの課題にどのように対応しているのかを説明します。
セルフホスティングLLMでデータとモデルを制御する
LLMを自社でホストすることで、データ、モデル、推論を自らのコントロール下に置くことが可能になります。これは、チーム、企業、国家にとって実用的な**AI主権への道です。ここでは、AI主権とは何か、どの側面と方法**で構築されるのか、LLMの自社ホスティングがどのように関与するのか、国々がこの課題にどのように対応しているのかを説明します。
RTX 4080(16GB VRAM)でのLLM速度テスト
大型言語モデルをローカルで実行することで、プライバシーの確保、オフラインでの利用、およびAPIコストのゼロ化が可能です。このベンチマークでは、RTX 4080上で動作する9つの人気のあるLLM([LLMs on Ollama on an RTX 4080](https://www.glukhov.org/ja/post/2026/01/choosing-best-llm-for-ollama-on-16gb-vram-gpu/ “LLMs on Ollama on an RTX 4080”)の実際の性能が明らかになります。
2026年1月の人気Goリポジトリ
Goエコシステムは、AIツール、セルフホストアプリケーション、開発者インフラにわたる革新的なプロジェクトとともに、ますます活気づいています。この概要では、今月のGitHub上位トレンドGoリポジトリについて分析します。
ローカルLLM用のセルフホスト型ChatGPT代替ソフト
Open WebUIは、拡張性が高く、機能豊富な自己ホスト型のウェブインターフェースで、大規模言語モデルとやり取りするのに最適です。
今やオーストラリアの小売業者から実際のAUD価格が提供されています。
NVIDIA DGX Spark (GB10 Grace Blackwell)は オーストラリアで今すぐ購入可能 の主要PC小売店で在庫あり。
グローバルDGX Sparkの価格と入手方法を ご存知の方は、オーストラリアの価格がストレージ構成や小売店によって 6,249〜7,999オーストラリアドル と幅があることをご存知でしょう。
ローカルLLMでCogneeをテストする - 実際の結果
CogneeはPythonフレームワークで、LLMを使用してドキュメントから知識グラフを構築するためのものです。 しかし、これは自社ホストされたモデルと互換性があるのでしょうか?
BAML と Instructor を使用した型安全な LLM 出力
LLM(大規模言語モデル)を本番環境で使用する際には、構造化された、型安全な出力を得ることが極めて重要です。
BAMLおよびInstructorという2つの人気のあるフレームワークは、この問題に対して異なるアプローチを取ります。
LLMを自社でホストするCogneeについての考察
最適なLLMの選定は、グラフ構築の品質、幻覚率、ハードウェアの制約をバランスよく考慮する必要があります。
Cogneeは、Ollama](https://www.glukhov.org/ja/post/2024/12/ollama-cheatsheet/ “Ollama cheatsheet”)を通じて32B以上の低幻覚モデルで優れたパフォーマンスを発揮しますが、軽量な構成では中規模のオプションも利用可能です。
PythonとOllamaを使ってAI検索エージェントを構築する
OllamaのPythonライブラリは、今やOLlama web searchのネイティブな機能を含んでいます。わずか数行のコードで、ローカルのLLMをインターネット上のリアルタイム情報を補完し、幻覚を減らし、正確性を向上させることができます。
GoとOllamaを使ってAI検索エージェントを構築する
OllamaのWeb検索APIは、ローカルLLMにリアルタイムのウェブ情報を補完する機能を提供します。このガイドでは、GoでのWeb検索の実装について、単純なAPI呼び出しからフル機能の検索エージェントまでの実装方法を示します。
12種類以上のツールを使ってローカルLLMの展開をマスターする
ローカルでのLLMの展開は、開発者や組織がプライバシーを高め、レイテンシーを減らし、AIインフラストラクチャの制御を強化するための手段として、ますます人気になってきています。
予算のハードウェアでオープンモデルを使用して企業向けAIを展開
AIの民主化はここにあります。 Llama 3、Mixtral、QwenなどのオープンソースLLMが、今やプロプライエタリモデルと同等の性能を発揮するようになり、チームは消費者ハードウェアを使用して強力なAIインフラストラクチャを構築できるようになりました。これにより、コストを削減しながらも、データプライバシーやデプロイメントに関する完全なコントロールを維持することが可能です。
GPT-OSS 120bの3つのAIプラットフォームでのベンチマーク
Docker Model RunnerとOllamaを用いたローカルLLMの比較
ローカルで大規模言語モデル(LLM)を実行する は、プライバシー、コスト管理、オフライン機能のため、ますます人気になっています。 2025年4月にDockerがDocker Model Runner(DMR)、AIモデルの展開用公式ソリューションを導入したことで、状況は大きく変わりました。
OllamaをGoで統合する: SDKガイド、例、およびプロダクションでのベストプラクティス
このガイドでは、利用可能な Go SDK for Ollama の包括的な概要を提供し、それらの機能セットを比較します。
これらの2つのモデルの速度、パラメータ、パフォーマンスの比較
ここに Qwen3:30b と GPT-OSS:20b の比較を示します。インストラクションに従う能力とパフォーマンスパラメータ、仕様、速度に焦点を当てています: