FLUX.1-Kontext-dev: 画像拡張AIモデル
テキスト指示を使って画像を拡張するためのAIモデル
ブラックフォレスト・ラボズは、FLUX.1-Kontext-devという高度な画像から画像へのAIモデルをリリースしました。このモデルは、テキストの指示を使って既存の画像を補強します。
テキスト指示を使って画像を拡張するためのAIモデル
ブラックフォレスト・ラボズは、FLUX.1-Kontext-devという高度な画像から画像へのAIモデルをリリースしました。このモデルは、テキストの指示を使って既存の画像を補強します。
NVIDIA CUDAをサポートするDocker Model RunnerでGPU加速を有効にする
Docker Model Runner は、AIモデルをローカルで実行するためのDocker公式ツールですが、NVIDIA GPU加速をDocker Model Runnerで有効にする には特定の設定が必要です。
LLMのコストを80%削減するスマートなトークン最適化で
トークン最適化は、コスト効率の良いLLMアプリケーションから予算を圧迫する実験を分ける重要なスキルです。
GPT-OSS 120bの3つのAIプラットフォームでのベンチマーク
Pythonの例を使ってAIアシスタント用のMCPサーバーを構築する
モデルコンテキストプロトコル(MCP)は、AIアシスタントが外部データソースやツールとどのように相互作用するかを革命的に変えてきました。本ガイドでは、ウェブ検索およびスクレイピング機能に焦点を当てた例を用いて、MCPサーバーをPythonで構築する方法について説明します。
Docker Model Runner コマンドのクイックリファレンス
Docker Model Runner (DMR) は、2025年4月に導入されたDocker公式のAIモデルをローカルで実行するためのソリューションです。このチートシートは、すべての必須コマンド、設定、およびベストプラクティスのクイックリファレンスを提供します。
Docker Model RunnerとOllamaを用いたローカルLLMの比較
ローカルで大規模言語モデル(LLM)を実行する は、プライバシー、コスト管理、オフライン機能のため、ますます人気になっています。 2025年4月にDockerがDocker Model Runner(DMR)、AIモデルの展開用公式ソリューションを導入したことで、状況は大きく変わりました。
専用チップにより、AIの推論がより高速かつ低コストになってきている。
在庫状況、6か国の実際の小売価格、およびMac Studioとの比較。
NVIDIA DGX Spark は現実のものであり、2025年10月15日に販売開始され、CUDA開発者向けに、統合されたNVIDIA AIスタックを使用してローカルLLM作業を行う必要がある人を対象としています。US MSRPは**$3,999**; UK/DE/JPの小売価格はVATとチャネルの影響で高くなっています。AUD/KRWの公開価格はまだ広く掲載されていません。
OllamaをGoで統合する: SDKガイド、例、およびプロダクションでのベストプラクティス
このガイドでは、利用可能な Go SDK for Ollama の包括的な概要を提供し、それらの機能セットを比較します。
これらの2つのモデルの速度、パラメータ、パフォーマンスの比較
ここに Qwen3:30b と GPT-OSS:20b の比較を示します。インストラクションに従う能力とパフォーマンスパラメータ、仕様、速度に焦点を当てています:
あまり良くない。
OllamaのGPT-OSSモデルは、特にLangChainやOpenAI SDK、vllmなどのフレームワークと併用する際、構造化された出力の処理に繰り返し問題を抱えています。
わずかに異なるAPIには特別なアプローチが必要です。
以下は、提供されたHugoページコンテンツの日本語への翻訳です。すべてのHugoショートコードと技術要素は正確に保持されており、日本語の文法、表記、文化に合った表現が使用されています。
以下は、構造化された出力(信頼性の高いJSONを取得)をサポートする、人気のあるLLMプロバイダーの比較、および最小限のPythonの例です。
Ollamaから構造化された出力を得るいくつかの方法
大規模言語モデル(LLM) は強力ですが、実運用では自由な形式の段落はほとんど使いません。 代わりに、予測可能なデータ:属性、事実、またはアプリにフィードできる構造化されたオブジェクトを望みます。 それはLLM構造化出力です。
オラマモデルのスケジューリングに関する自分のテスト ````
ここでは、新しいバージョンのOllamaがモデルに対してどのくらいのVRAMを割り当てているかについて、Ollama VRAM割り当てと以前のOllamaバージョンを比較しています。新しいバージョンは、実際には以前のバージョンよりも劣っています。