Self-Hosting

Utiliser l'API de recherche web d'Ollama en Python

Utiliser l'API de recherche web d'Ollama en Python

Construisez des agents de recherche IA avec Python et Ollama

La bibliothèque Python d’Ollama inclut désormais des capacités natives de recherche web Ollama. Avec quelques lignes de code, vous pouvez enrichir vos modèles locaux de LLM avec des informations en temps réel provenant du web, réduisant ainsi les hallucinations et améliorant la précision.

Comparaison des magasins de vecteurs pour RAG

Comparaison des magasins de vecteurs pour RAG

Choisissez le bon DB vectoriel pour votre pile RAG

Le choix du bon stockage vectoriel peut faire la différence entre le succès et l’échec de votre application RAG en termes de performance, de coût et d’évolutivité. Cette comparaison approfondie couvre les options les plus populaires en 2024-2025.

Infrastructure d'IA sur le matériel grand public

Infrastructure d'IA sur le matériel grand public

Déployez l'intelligence artificielle d'entreprise sur des matériels abordables avec des modèles open source

La démocratisation de l’IA est ici. Avec des LLM open source comme Llama 3, Mixtral et Qwen qui rivalisent désormais avec les modèles propriétaires, les équipes peuvent construire une infrastructure puissante d’IA à l’aide du matériel grand public - réduisant les coûts tout en maintenant un contrôle complet sur la confidentialité des données et le déploiement.

Installer et utiliser Grafana sur Ubuntu : guide complet

Installer et utiliser Grafana sur Ubuntu : guide complet

Maîtrisez la configuration de Grafana pour le monitoring et la visualisation

Grafana est la plateforme open source leader pour le monitoring et l’observabilité, transformant les métriques, les logs et les traces en informations exploitables grâce à des visualisations spectaculaires.

StatefulSets et stockage persistant dans Kubernetes

StatefulSets et stockage persistant dans Kubernetes

Déployez des applications stateful avec un scaling ordonné et des données persistantes

Kubernetes StatefulSets sont la solution idéale pour gérer les applications stateful qui nécessitent des identités stables, un stockage persistant et des schémas de déploiement ordonnés — essentielles pour les bases de données, les systèmes distribués et les couches de mise en cache.

Exécuter FLUX.1-dev GGUF Q8 en Python

Exécuter FLUX.1-dev GGUF Q8 en Python

Accélérer FLUX.1-dev avec la quantification GGUF

FLUX.1-dev est un modèle puissant de génération d’images à partir de texte qui produit des résultats impressionnants, mais sa demande en mémoire de 24 Go ou plus le rend difficile à exécuter sur de nombreux systèmes. Quantification GGUF de FLUX.1-dev offre une solution, réduisant l’utilisation de la mémoire d’environ 50 % tout en maintenant une excellente qualité d’image.