检测AI劣质内容:技术与警示信号
人工智能生成内容检测技术指南
AI生成内容的泛滥带来了一个新的挑战:区分真正的原创人类写作与“AI劣质内容”(AI劣质内容)——低质量、批量生产的合成文本。
人工智能生成内容检测技术指南
AI生成内容的泛滥带来了一个新的挑战:区分真正的原创人类写作与“AI劣质内容”(AI劣质内容)——低质量、批量生产的合成文本。
使用本地LLM测试Cognee - 实际效果
Cognee 是一个 Python 框架,用于使用 LLM 从文档中构建知识图谱。 但它能与自托管模型一起使用吗?
使用 BAML 和 Instructor 实现类型安全的 LLM 输出
在生产环境中使用大型语言模型时,获取结构化、类型安全的输出至关重要。
两个流行的框架——BAML 和 Instructor——采用不同的方法来解决这个问题。
关于自托管Cognee中使用LLM的思考
选择 最适合 Cognee 的 LLM 需要平衡图构建质量、幻觉率和硬件限制。
Cognee 在使用较大且低幻觉模型(32B+)时表现优异,例如通过 Ollama,但中等规模的模型也适用于较轻量的设置。
必备快捷键和神奇命令
使用基本的快捷键、魔法命令和工作流程技巧,快速提升你的数据科学和开发体验,从而启动 Jupyter Notebook 生产力。
使用 Python 和 Ollama 构建 AI 搜索代理
Ollama 的 Python 库现在包含原生的 OLlama 网络搜索 功能。只需几行代码,你就可以使用网络上的实时信息增强本地 LLM,从而减少幻觉并提高准确性。
为你的RAG堆栈选择合适的向量数据库
选择合适的向量数据库可以决定你的RAG应用的性能、成本和可扩展性。这篇全面的比较涵盖了2024-2025年最受欢迎的选项。
使用 Go 和 Ollama 构建 AI 搜索代理
Ollama 的 Web 搜索 API 可以让您将本地 LLM 与实时网络信息相结合。本指南将向您展示如何在 Go 中实现 网络搜索功能,从简单的 API 调用到功能齐全的搜索代理。
掌握本地LLM部署,对比12+工具
本地部署大型语言模型 随着开发人员和组织寻求增强的隐私性、减少延迟和对AI基础设施的更大控制权,变得越来越流行。
使用 Go 微服务构建强大的 AI/ML 管道
随着人工智能和机器学习工作负载变得越来越复杂,对强大的编排系统的需求也变得更为迫切。Go语言的简洁性、性能和并发特性使其成为构建机器学习流水线的编排层的理想选择,即使模型本身是用Python编写的。
在共享的嵌入空间中统一文本、图像和音频
跨模态嵌入 代表了人工智能领域的一项突破,它使不同数据类型能够在统一的表示空间中实现理解和推理。
在预算硬件上部署企业级AI,使用开放模型
人工智能的民主化已经到来。
借助像 Llama 3、Mixtral 和 Qwen 这样的开源大语言模型(LLM),团队现在可以使用消费级硬件构建强大的 AI 基础设施 - 在降低成本的同时,仍能完全控制数据隐私和部署。
LongRAG、Self-RAG、GraphRAG - 下一代技术
检索增强生成(RAG) 已经远远超越了简单的向量相似性搜索。 LongRAG、Self-RAG 和 GraphRAG 代表了这些能力的前沿。
掌握数据科学工作中 Linux 环境的设置
Linux 已成为数据科学专业人士事实上的操作系统,提供无与伦比的灵活性、性能和丰富的工具生态系统。
使用GGUF量化加速FLUX.1-dev
FLUX.1-dev 是一款功能强大的文本到图像模型,能够生成令人惊叹的结果,但其24GB以上的内存需求使得在许多系统上运行变得具有挑战性。 FLUX.1-dev的GGUF量化版本 提供了一种解决方案,将内存使用量减少约50%,同时保持出色的图像质量。
在 Docker Model Runner 中配置上下文大小的变通方法
在 Docker Model Runner 中配置上下文大小 比它应该的要复杂得多。