PyTorch

लिनक्स डेटा साइंस स्टैक: जुपिटर, पांडास और टूल्स

लिनक्स डेटा साइंस स्टैक: जुपिटर, पांडास और टूल्स

डेटा साइंस कार्य के लिए लिनक्स वातावरण सेटअप मास्टर करें

लिनक्स डेटा साइंस के लिए डिफ़ॉल्ट ऑपरेटिंग सिस्टम बन गया है, जो अनमैच्ड फ्लेक्सिबिलिटी, परफॉर्मेंस, और टूल्स के एक समृद्ध पारिस्थितिकी तंत्र प्रदान करता है। डेटा साइंस प्रोफेशनल्स के लिए यह सबसे अच्छा विकल्प है।

पाइथन में FLUX.1-dev GGUF Q8 चलाना

पाइथन में FLUX.1-dev GGUF Q8 चलाना

GGUF क्वांटाइजेशन के साथ FLUX.1-dev को तेज़ करें

FLUX.1-dev एक शक्तिशाली टेक्स्ट-टू-इमेज मॉडल है जो आश्चर्यजनक परिणाम उत्पन्न करता है, लेकिन इसकी 24GB+ मेमोरी आवश्यकता इसे कई सिस्टम पर चलाने में चुनौतीपूर्ण बनाती है। GGUF क्वांटाइजेशन के साथ FLUX.1-dev एक समाधान प्रदान करता है, जो मेमोरी उपयोग को लगभग 50% कम करता है जबकि उत्कृष्ट इमेज क्वालिटी बनाए रखता है।

फ्लक्स.1-कोण्टेक्स्ट-डेव: इमेज ऑगमेंटेशन AI मॉडल

फ्लक्स.1-कोण्टेक्स्ट-डेव: इमेज ऑगमेंटेशन AI मॉडल

इमेजों को टेक्स्ट निर्देशों के साथ बढ़ाने के लिए AI मॉडल

ब्लैक फॉरेस्ट लैब्स ने FLUX.1-Kontext-dev जारी किया है, एक उन्नत इमेज-टू-इमेज एआई मॉडल जो टेक्स्ट निर्देशों का उपयोग करके मौजूदा इमेजों को बढ़ाता है।

अब MMdetection का समर्थन नहीं किया जाता है।

अब MMdetection का समर्थन नहीं किया जाता है।

MM* उपकरणों के पूरा सेट EOL पर है...

मैंने MMDetection (mmengine, mdet, mmcv) काफी काम में उपयोग किया है,
अब लगता है कि यह खेल से बाहर हो गया है।
यह दुर्भाग्यपूर्ण है। मुझे इसके मॉडल ज़ू के बारे में पसंद था।

फ्लक्स टेक्स्ट से इमेज AI मॉडल

फ्लक्स टेक्स्ट से इमेज AI मॉडल

अद्भुत नई AI मॉडल पाठ से चित्र उत्पन्न करने के लिए

हाल ही में ब्लैक फॉरेस्ट लैब्स ने एक सेट
टेक्स्ट-टू-इमेज आर्टिफिशियल इंटेलिजेंस मॉडल का प्रकाशन किया है।
इन मॉडलों के उत्पादन गुणवत्ता बहुत अधिक है।
इन्हें आज़माएं

लेबल स्टूडियो एवं मीडी डेटेक्शन के साथ ऑब्जेक्ट डेटेक्टर AI का ट्रेनिंग

लेबल स्टूडियो एवं मीडी डेटेक्शन के साथ ऑब्जेक्ट डेटेक्टर AI का ट्रेनिंग

लेबलिंग और ट्रेनिंग में कुछ चिपकाना आवश्यक है

जब मैं object detector AI का ट्रेन कर रहा था कुछ समय पहले - LabelImg एक बहुत सहायक टूल था, लेकिन Label Studio से COCO फॉर्मेट में एक्सपोर्ट MMDetection फ्रेमवर्क द्वारा स्वीकृत नहीं था।